Фотосинтетические пигменты находятся

Пигменты фотосинтетического аппарата

Жизнь растений: в 6-ти томах. — М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .

  • Пигментация бактерий рода Pseudomonas
  • Планктонные водоросли

Смотреть что такое «Пигменты фотосинтетического аппарата» в других словарях:

Механизм фотосинтеза — Преобразование энергии света в химическую энергию продуктов фотосинтеза представляет сложную цепь взаимосвязанных реакций, в которых участвуют многие соединения и структурные компоненты хлоропласта. Цепь реакций, составляющих… … Биологическая энциклопедия

фотосинтез — [тэ], а; м. Спец. Процесс образования углеводов из углекислоты и воды под действием света, поглощаемого хлорофиллом, в клетках зелёных растений, водорослей и некоторых микроорганизмов. ◁ Фотосинтетический, ая, ое. Ф ая деятельность. Ф ая… … Энциклопедический словарь

Фотосинтез — (от Фото. и Синтез образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности как самих растений, так и всех др. организмов, из простых соединений (например … Большая советская энциклопедия

Пластиды — (греч. plástides создающие, образующие, от plastós вылепленный, оформленный) внутриклеточные органеллы цитоплазмы автотрофных растений, содержащие пигменты и осуществляющие синтез органических веществ. У высших растений различают 3 типа П … Большая советская энциклопедия

ФОТОСИНТЕЗ — образование живыми растительными клетками органических веществ, таких, как сахара и крахмал, из неорганических из СО2 и воды с помощью энергии света, поглощаемого пигментами растений. Это процесс производства пищи, от которого зависят все живые… … Энциклопедия Кольера

Пурпурные бактерии — Пурпурные бактерии. Пурпурные бактерии (Purple bacteria) группа фотосинтезирующих протеобактерий, обитающих в солёных и пресных водах. Они содержат красные пигменты: бактериохлорофиллы … Википедия

Фотосинтетические пигменты находятся

Гусев М. В., Минеева Л. А. — Микробиология

В представленном в этой главе материале проанализированы энергетические процессы, сформированные на первом этапе эволюции жизни на Земле. То, что брожение — наиболее примитивный способ получения энергии организмами, в настоящее время никем не ставится под сомнение. Гораздо сложнее оценить, какой путь в процессе эволюции пройден теми или иными организмами. Очевидно, что при имеющихся возможностях обмена генетической информацией в мире прокариот сохранение их в первоначальном виде маловероятно. Описание представленных в этой главе нескольких групп анаэробных эубактерий, в первую очередь, пропионовокислых бактерий и клостридиев, служит иллюстрацией этого.

Глава 14. Фотосинтез. Типы жизни, основанные на фотофосфорилировании

В предыдущей главе был рассмотрен ряд групп прокариот, относящихся к эубактериям, получающих энергию в реакциях субстратного фосфорилирования и не зависящих от молекулярного кислорода. Их предки появились на Земле, когда в ее атмосфере отсутствовал O2. Единственным источником свободной энергии, доступным первобытным организмам, была химическая энергия органических молекул, возникших в основном абиогенным путем. Увеличение численности популяций приводило к возрастанию использования органических молекул в окружающей среде, которое на определенном этапе стало превышать их накопление. В результате органические вещества постепенно исчерпывались из среды. Создавалась критическая ситуация, вызываемая нехваткой соединений, которые могли бы служить источником свободной энергии для организмов. Перед ними возникла проблема поиска новых источников углеродного питания и свободной энергии. В энергетическом плане необходимо было найти способ получения энергии за счет постоянно действующего источника. Такой источник энергии представляет собой солнечная радиация. Глобальное значение развившейся способности использовать световую энергию в том, что фотосинтез — единственный процесс, приводящий к увеличению свободной энергии на нашей планете. Таким образом, фотосинтез обязан своим «происхождением» экологическому кризису, возникшему в результате исчерпания на определенном этапе развития жизни органических ресурсов планеты.

Жизнь за счет анаэробных превращений органических субстратов привела к возникновению анаэробной формы жизни за счет света. Для этого прежде всего должны были возникнуть молекулы, поглощающие кванты света. Когда сформировались структуры для улавливания света, появилась возможность использования световой энергии. То, как эта возможность реализовывалась, доказывает наличие нескольких типов фотосинтеза, осуществляемого разными группами эубактерий, энергетический метаболизм которых полностью или частично основан на использовании энергии света. Фотосинтезирующие эубактерий представлены пурпурными и зелеными бактериями, гелиобактериями, цианобактериями51 и прохлорофитами.

51 В ботанической литературе — сине-зеленые водоросли.

Пигменты фотосинтезирующих эубактерий

Для абиогенного синтеза органических веществ в основном требовался ультрафиолет. Все известные в настоящее время фотосинтезирующие организмы используют в процессе фотосинтеза видимый и инфракрасный свет. Наиболее богатые энергией ультрафиолетовые лучи в фотосинтезе практически не используются (см. рис. 35). Это связано с фотохимическими эффектами разных частей спектра, рассмотренными ранее.

Фотосинтезирующие эубактерий обязательно содержат магнийпорфириновые пигменты — хлорофиллы. Известно больше десяти видов хлорофиллов, но все они поглощают свет видимой и инфракрасной частей спектра.

Вероятно, первыми фоторецепторами, предшественниками современных хлорофиллов, следует считать порфирины, структура которых обеспечивает поглощение умеренно энергизованных квантов света. Экспериментально показана возможность синтеза порфиринов абиогенным путем из простых веществ в условиях, имитирующих условия первобытной Земли.

Важным моментом в эволюции порфиринов явилось включение ионов металла в центр порфиринового ядра. Все порфирины, обладающие фоторецепторным действием, являются магниевыми комплексами. Порфирины, участвующие в темновом транспорте электронов (цитохромы), а также ферменты каталаза и пероксидаза содержат в центре порфиринового кольца атом железа.

Итак, способность организмов существовать за счет энергии света в первую очередь связана с наличием у них специфических фоторецепторных молекул — пигментов. Набор пигментов характерен и постоянен для определенных трупп фотосинтезирующих эубактерий. Соотношения между отдельными пигментами колеблются в зависимости от вида и условий культивирования. В целом фотосинтетические пигменты эубактерий обеспечивают поглощение света с длиной волны в области 300 — 1100 нм.

Читайте также:  Как остановить кровь после удаления зуба первая помощь и другие методы

Все фотосинтетические пигменты относятся к двум химическим классам соединений: 1) пигменты, в основе которых лежит тетрапиррольная структура (хлорофиллы, фикобилипротеины); 2) пигменты, основу которых составляют длинные полиизопреноидные цепи (каротиноиды). Особенность химического строения молекул всех фотосинтетических пигментов состоит в наличии системы сопряженных двойных связей52, от количества которых зависит способность пигментов улавливать бедные энергией кванты света, а также защита каротиноидами хлорофилла от синглетного кислорода.

52 Сопряженными называются двойные связи, чередующиеся с простыми, т. e. -CH=CH-СH=CH-.

Хлорофиллы

Рис. 68. Обобщенная формула хлорофиллов. Римскими цифрами указаны пиррольные кольца. Химическая природа радикалов R1 — R7 приведена в табл. 19

У фотосинтезирующих эубактерий известно больше десяти видов хлорофиллов (рис. 68, табл. 19). Хлорофиллы эубактерий, осуществляющих бескислородный фотосинтез (пурпурные и зеленые бактерии, гелиобактерии) получили общее название бактериохлорофиллов. Идентифицировано 6 основных видов бактериохлорофиллов: а, b, с, d, e, g53. Все пурпурные бактерии содержат какую-либо одну форму бактериохлорофилла: a или b. Небольшие различия в химическом строении приводят к существенным изменениям в спектральных свойствах этих пигментов. Пурпурные бактерии, содержащие бактериохлорофилл a, могут поглощать свет с длиной волны до 950 нм. У видов, имеющих бактериохлорофилл b, максимум поглощения в красной части спектра сдвинут в длинноволновую область больше чем на 100 нм и приходится на 1020 — 1030 нм, а граница поглощения продвинута до 1100 нм. Дальше бактериохлорофилла b не поглощает ни один известный фотосинтетический пигмент. Основными хлорофилльными пигментами зеленых бактерий являются бактериохлорофиллы с, d или e, незначительно различающиеся между собой по спектрам поглощения (табл. 19). Кроме них в клетках всех зеленых бактерий в небольшом количестве содержится бактериохлорофилл a. Наличие этих бактериохлорофиллов позволяет зеленым бактериям использовать свет с длиной волны до 840 нм. Необычный бактериохлорофилл g с максимумом поглощения 790 нм обнаружен у облигатно анаэробных фотосинтезирующих бактерий Heliobacterium chlorum и Heliobacillus mobilis, выделенных в группу гелиобактерий.

53 Бактериохлорофиллы a, b и c, по последним данным, существуют в нескольких модификациях, так как радикал R6 может быть фитолом, фарнезолом, геранил-гераниолом или другим многоатомным спиртом (табл. 19).

Эубактерии, фотосинтез которых сопровождается выделением молекулярного кислорода (цианобактерии и прохлорофиты), содержат хлорофиллы, характерные для фотосинтезирующих эукариотных организмов. У цианобактерий — это хлорофилл a, единственный вид хлорофилла, обнаруженный в этой группе; в клетках прохлорофит — хлорофиллы a и b. Присутствие этих пигментов обеспечивает поглощение света до 750 нм.

Для всех хлорофиллов характерно наличие нескольких максимумов по глощения. В клетке спектральные свойства хлорофиллов определяются нековалентными взаимодействиями молекул пигмента друг с другом, а также с липидами и белками фотосинтетических мембран.

Фикобилипротеины

Таблица 19. Различия в химическом строении хлорофиллов фотосинтезирующих эубактерий и основные максимумы их поглощения в клетке

Химическая природа радикалов, указанных на рис. 68

Основной максимумпоглощения в клетке, нм

Фикобилипротеины — красные и синие пигменты, содержащиеся только у одной группы эубактерий — цианобактерий54. Хромофорная группа пигмента, называемая фикобилином, ковалентно связана с водорастворимым белком типа глобулина и представляет собой структуру, состоящую из четырех пиррольных колец, но не замкнутых, как в молекуле хлорофилла, а имеющих вид развернутой цепи, не содержащей металла (рис. 69). Молекулы фикобилипротеинов состоят из двух нековалентно связанных неидентичных субъединиц — a и b, к каждой из которых ковалентно присоединены хромофорные группы: фикоэритробилин или фикоцианобилин. Некоторые данные относительно строения и спектральных свойств фикобилипротеинов цианобактерий приведены в табл. 20.

34 Фикобилипротеины содержатся также у двух групп эукариот: красных и криптофитовых водорослей.

Таблица 20. Строение и спектральные свойства основных фикобилипротеинов цианобактерий

Субъединичный состав мономера

Число и тип молекул хромофоров, связанных с субъединицами*

Состояние пигмента в клетке

Основной максимум поглощения, нм

* ФЭБ — фикоэритробилин; ФЦБ — фикоцианобилин.

Различия в спектральных свойствах фикобилипротеинов определяются аминокислотной последовательностью a- и b-полипептидов, числом и типом присоединенных к ним хромофорных групп, а также степенью агрегирования. Так, переход аллофикоцианина из мономерного состояния в гримерное сопровождается изменением максимума поглощения от 616 до 654 нм. Степень агрегирования зависит от вида и возраста культуры, а также от внешних факторов: pH, ионной силы раствора, температуры. В основе агрегирования молекул фикобилипротеинов лежат гидрофобные взаимодействия между мономерами. Значение способности фикобилипротеинов к агрегированию становится понятным при формировании ими фикобилисом — структур, в которых эти пигменты организованы в агрегаты высокого порядка.

Рис. 69. Химическая структура хромофорных групп фикоэритрина (фикоэритробилин), фикоцианина и аллофикоцианинов (фикоцианобилин). Римскими цифрами указаны пиррольные кольца (по Chapman, 1973)

Фикобилипротеины обеспечивают в клетках цианобактерий поглощение света в области 450 — 700 нм и с высокой эффективностью (больше 90%) передают поглощенный свет на хлорофилл, при этом основное количество энергии передается на хлорофилл, связанный со II фотосистемой. Все цианобактерий содержат небольшие количества аллофикоцианина и его длинноволновой формы — аллофикоцианина B, а также значительные количества фикоцианина, одного из основных клеточных пигментов, содержание которого в условиях низкой освещенности может достигать 60% от общего уровня растворимых белков клетки. Некоторые цианобактерий содержат также второй основной фикобилипротеин — фикоэритрин. Способность синтезировать фикоэритрин может быть конститутивным свойством организма или индуцироваться в определенных условиях освещения.

Каротиноиды

К вспомогательным фотосинтетическим пигментам, которые содержат все фотосинтезирующие организмы, относятся каротиноиды, большая группа химических соединений, представляющих собой продукт конденсации остатков изопрена:

Большинство каротиноидов построено на основе конденсации 8 изопреноидных остатков. У некоторых каротиноидов полиизо- преноидная цепь открыта и не содержит циклических группировок. Такие каротиноиды называются алифатическими. У большинства на одном или обоих концах цепи расположено по ароматическому или (3-иононовому кольцу. Каротиноиды первого типа относятся к арильным, второго — к алициклическим. Выделяют также каротиноиды, не содержащие в молекуле кислорода, и кислородсодержащие каротиноиды, общее название которых ксантофиллы.

Читайте также:  Дмитрий Борисов и Василий Ракша живут вместе или нет, они пара

Состав каротиноидов фотосинтезирующих эубактерий разнообразен. Наряду с пигментами, одинаковыми у разных групп, для каждой из них обнаружены определенные каротиноиды или наборы последних.

Рис. 70. Структурные формулы некоторых каротиноидов фотосинтезирующих эубактерий (по Кондратьевой, 1972; Nichols, 1973)

Наиболее разнообразен состав каротиноидных пигментов у пурпурных бактерий, из которых выделено свыше 50 каротиноидов. В клетках большинства пурпурных бактерий содержатся только алифатические каротиноиды, многие из которых принадлежат к группе ксантофиллов. У некоторых пурпурных серобактерий обнаружен арильный моноциклический каротиноид окенон, а у двух видов несерных пурпурных бактерий найдено небольшое количество (3-каротина, алициклического каротиноида, распространенного у цианобактерий и фотосинтезирующих эукариотных организмов. Структурные формулы некоторых характерных для пурпурных бактерий каротиноидов представлены на рис. 70, 2 — 5. Набор и количество отдельных каротиноидов определяют окраску пурпурных бактерий, густые суспензии которых имеют пурпурно-фиолетовый, красный, розовый, коричневый, желтый цвета.

Зеленые бактерии по составу каротиноидов отличаются от пурпурных. Основные каротиноиды зеленых серобактерий — арильные, содержащие 1 или 2 ароматических кольца, а также алициклический каротиноид g-каротин (рис. 70, 6 — 9). Иной состав каротиноидов у зеленых нитчатых бактерий. Эта группа эубактерий, цианобактерий и прохлорофиты содержат алициклические каротиноиды с одним или двумя b-иононовыми кольцами. Основной пигмент — b-каротин, составляющий иногда больше 70% общего количества каротиноидов клетки. Специфическим ксантофиллом этих групп является эхиненон, а также гликозидные производные некоторых кислородсодержащих каротиноидов типа миксоксантофилла (рис. 70, 1, 10, 11).

Каротиноидные пигменты поглощают свет в синем и зеленом участках спектра, т. е. в области длин волн 400 — 550 нм. Эти пигменты, как и хлорофиллы, локализованы в мембранах и связаны с мембранными белками без участия ковалентных связей. Функции каротиноидов фотосинтезирующих эубактерий многообразны. В качестве вспомогательных фотосинтетических пигментов каротиноиды поглощают кванты света в коротковолновой области спектра, которые затем передаются на хлорофилл. У цианобактерий энергия света, поглощенная каротиноидами, поступает в основном в I фотосистему. Эффективность передачи энергии для разных каротиноидов колеблется от 30 до 90%. Известно участие каротиноидов в осуществлении реакций фототаксиса, а также в защите клетки от токсических эффектов синглетного кислорода.

Спектры поглощения клеток разных групп фотосинтезирующих эубактерий

Пигментные наборы фотосинтезирующих эубактерий позволяют им использовать весь диапазон длин волн падающей на Землю солнечной энергии (рис. 71; см. рис. 35). Обращает внимание большое различие в спектрах поглощения у представителей разных групп фотосинтезирующих организмов и прежде всего существенные сдвиги в максимумах поглощения хлорофиллов в красной области спектра. Несомненно экологическое значение этого явления, позволяющего избегать конкуренции за свет между разными группами фотосинтезирующих организмов. Что же касается эволюции спектров поглощения хлорофиллов, то очевидна тенденция к перемещению в более коротковолновую часть спектра с более высоким энергетическим уровнем.

Строение фотосинтетического аппарата эубактерий

Рис. 71. Спектры поглощения клеток эукариотной зеленой водоросли Chlorella pyrenoidosa и представителей разных групп фотосинтезирующих эубактерий: цианобактерии (Anacystis nidulans, Synechococcus), зеленых (Chlorobium limicola, Prosthecochloris aestuarii) и пурпурных (Chromatium okenii, Rhodopseudomonas viridis) бактерий

Фотосинтетический аппарат основных групп эубактерий организован по-разному. Это проявляется как в химической природе составляющих его компонентов (набор пигментов, состав переносчиков электронов), так и в структурной организации в клетке. Фотосинтетический аппарат состоит из трех основных компонентов: 1) светособирающих пигментов, поглощающих энергию света и передающих ее в реакционные центры; 2) фотохимических реакционных центров, где происходит трансформация электромагнитной формы энергии в химическую; 3) фотосинтетических электронтранспортных систем, обеспечивающих перенос электронов, сопряженный с запасанием энергии в молекулах АТФ. В фотохимической реакции участвуют, как правило, хлорофиллы или бактериохлорофиллы a в модифицированной форме. Эти же виды хлорофиллов, наряду с другими, а также пигментами иных типов (фикобилипротеины, каротиноиды) выполняют функцию антенны. У некоторых пурпурных бактерий, содержащих только бактериохлорофилл b, он выполняет обе функции. У недавно описанных гелиобактерий бактериохлорофилл g также служит светособирающим пигментом и входит в состав реакционного центра (табл. 21).

Фотосинтез

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Читайте также:  Анализы при заболеваниях печени методы диагностики, биохимические показатели, расшифровка результато

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

Образовавшиеся при фотолизе воды протоны (H + ) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД + превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S +4 O3) 2- —> (S +6 O4) 2-
  • Железобактерии — окисляют Fe +2 —>Fe +3
  • Водородные бактерии — окисляют H2 —> H +1 2O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений (это происходит за счет клубеньковых бактерий на корнях бобовых растений).

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Ссылка на основную публикацию
Форменные элементы крови эритроциты, тромбоциты, лейкоциты
Окраска цитоплазмы крови человека Оборудование и материалы: лабораторный микроскоп, гистологические препараты: Мазок крови взрослого человека Мазок крови лягушки Мазок красного...
Физраствор для промывания глаз можно ли капать, когда применяют, как промывать
Фурацилин для новорожденных Уход за новорожденным – далеко не такое сложное дело, как представляется многим молодым мамочкам. Главное в нем...
Физраствор для промывания носа взрослому фото, инструкция, цена, видео
Как правильно промывать нос и когда это нужно? Такая проблема, как заложенность носа, не считается самостоятельным заболеванием, а лишь симптомом...
Формы олигофрении и ее классификация (Сухарева, Певзнер)
Олигофрения – последствие ДЦП В переводе с древнегреческого языка слово «олигофрения» — это умственная отсталость. Это заболевание может быть как...
Adblock detector