Современные методы микроскопических исследований — Скачать Реферат — Рефераты — Phaeto

Поляризационная микроскопия в гистологии

Поляризационная микроскопия — один из высокоэффективных методов морфологического исследования, обладающий широкими возможностями идентификации биологических структур, что в сочетании с доступностью и относительной простотой обусловливает его высокую ценность. Метод позволяет изучать не только гистологическое строение препарата, но и некоторые его гистохимические параметры. В 40 —50-х годах XX в. поляризационную микроскопию причисляли к ультраструктурным методам, так как она позволяла видеть ультраструктурные способности тканей.

Поляризационная микроскопия предназначена для изучения свойств гистологических структур, обладающих способностью двоякого лучепреломления (анизотропии) — раздвоения светового луча при прохождении его через анизотропную среду. Световая волна в анизотропной среде распадается на две волны с взаимно перпендикулярными плоскостями колебаний электромагнитных волн. Эти плоскости называются плоскостями поляризации. Поляризованный свет отличается от обычного (неполяризованного) тем, что в последнем колебания световых волн происходят в различных плоскостях, а в поляризованном свете — лишь в определенной плоскости.

Для создания эффекта поляризации в поляризационном микроскопе применяются два поляроида. Первый, который называется поляризатором, помещается между осветителем микроскопа и гистологическим препаратом.Второй поляроид, находящийся между гистологическим препаратом и глазом исследователя, — анализатором. И поляризатор, и анализатор в оптическом отношении представляют собой совершенно одинаковые поляризационные фильтры, поэтому их можно менять местами (если конструкция микроскопа это позволяет). Ранее для поляризационной микроскопии применяли изготавливаемые из исландского шпата призмы Николя, Аренса или Томсона. У этих призм был ограничен угол преломления света. В настоящее время вместо них используют плоские поляризационные фильтры, продуцирующие широкопольный поляризованный свет.

В создании поляризованного света определяющую роль играет взаимное расположение поляризатора и анализатора относительно оптической оси микроскопа. Если они ориентированы таким образом, что тот и другой пропускают поляризованный свет в одной и той же плоскости, т.е. при совпадении их плоскостей поляризации, оба поляризационных фильтра способны пропускать поляризованный свет; поле зрения микроскопа при этом светлое (рис. 1,а).

Рис. 1 Препарат легкого человека в светлом поле, OlympusCX41, объектив 10х

Если же плоскости поляризации поляризационных фильтров взаимно перпендикулярны (этого достигают путем поворота анализатора на 90° вокруг оптической оси микроскопа), то поляризованный свет не проходит и исследователь видит темное поле зрения (рис. 2).

При повороте поляризатора на 360° в процессе его вращения поле зрения дважды полностью затемнено и дважды полностью просветлено. В прошлом применяли компенсаторные фильтры Бернауэра, при использовании которых затемненное поле зрения имеет красноватый оттенок (U-TP530). При применении черных зеркальных фильтров затемненное поле зрения выглядит не полностью темным, а слабо подсвеченным.

Рис.2 Препарат легкого человека в поляризованном свете, OlympusCX41, объектив 10х

В тех случаях, когда при скрещенном положении поляризационных фильтров (т.е. в ортоскопии) на пути поляризованного света встречаются анизотропные субстанции, содержащиеся в гистологическом препарате, эти субстанции расщепляют поляризованный свет на два луча с взаимно перпендикулярными плоскостями колебаний световых волн. Световые лучи с плоскостью колебаний, совпадающей с плоскостью поляризации, проходят через анализатор, а с перпендикулярной — отсекаются, вследствие чего интенсивность светового потока, попадающего в глаз исследователя и на камеру, составляет лишь половину интенсивности исходного светового пучка. В результате описанных процессов анизотропные субстанции, находящиеся между двумя скрещенными поляризаторами, видны на темном фоне в виде светлых светящихся объектов. При этом изотропные структуры, не обладающие способностью двоякого лучепреломления, остаются темными.

Это также влияет на выбор камеры для поляризационной микроскопии. Так как задача стоит снять небольшие светлые сигналы на темном фоне, то обычно камеры для светлопольной микроскопии может быть недостаточно, из-за низкой чувствительности камеры и большого количества шумов, которые образуются при съемке. Для съемки в поляризационной микроскопии необходима камера для микроскопии с высокой чувствительностью и точной цветопередачей. Предпочтительно использовать камеры на базе CCD- матриц (OlympusDP80, DP73, DP26,VideoZavr VZ-18C28, VZ-CC50S), однако на текущем этапе можно применять и бюджетные варианты камер на базе CMOS-матриц Sonyсерии IMX (VZ-18C23).

В биологических тканях имеется достаточное количество анизотропных структур: элементы сократительного аппарата мышц, амилоид, мочевая кислота, коллагеновые образования, некоторые липиды, ряд кристаллов и др.

Расщепленные в анизотропном объекте и проходящие через анализатор световые лучи характеризуются неодинаковой скоростью распространения волн. В зависимости от величины этой разницы (ее еще называют величиной задержки светового луча) и от различий абсорбции света в анализаторе свечение анизотропных объектов может быть белым или цветным. В последнем случае речь идет о феномене дихроизма (двойная абсорбция). Цветовые эффекты при исследовании в поле поляризации дают, например, многие кристаллы.

Процесс двоякого лучепреломления может быть усилен путем применения определенных красителей, молекулы которых обладают способностью ориентированно откладываться на анизотропных структурах. Гистохимические реакции, в результате которых возникает эффект анизотропии, называются топооптическими реакциями (G. Romhanyi). Различают две разновидности таких реакций — аддитивные и инверсивные. При аддитивных реакциях задержка светового луча увеличивается, что называют положительной анизотропией, при инверсивных реакциях она уменьшается — отрицательная анизотропия.

АППАРАТУРА И ОБОРУДОВАНИЕ

Поляризационную микроскопию проводят с помощью специальных поляризационных микроскопов. В качестве примера можно назвать импортные микроскопы Olympus BX53, Olympus BX43, Olympus CX41. Большинство современных оптических микроскопов оснащаются принадлежностями для поляризационной микроскопии.

Для поляризационной микроскопии можно приспособить любой световой микроскоп лабораторного и исследовательского класса. Достаточно иметь два поляризационных фильтра, один из которых, выполняющий функцию поляризатора, помещают между источником света и препаратом, а другой, играющий роль анализатора,— между препаратом и глазом исследователя. Поляризатор может быть встроен в конденсор или же размещен под ним над полевой диафрагмой, а анализатор — в слот револьвера или же промежуточную вставку.

На рис. 3 представлена принципиальная схема поляризационного микроскопа. Помимо общих для всех световых микроскопов компонентов, в поляризационном микроскопе имеется два поляризационных фильтра (поляризатор, размещаемый обычно под конденсором, и анализатор, находящийся в окуляре), а также компенсатор. Анализатор должен обязательно вращаться, причем для определения степени вращения необходима соответствующая градуированная шкала.

В поляризационном микроскопе используется источник освещения, обеспечивающий высокую плотность светового пучка. В качестве такого источника рекомендуют применять лампу мощностью 100 Вт при напряжении 12 В. Для некоторых видов исследования требуется монохроматический свет. С этой целью используют металлический интерференционный фильтр, который лучше поместить над зеркалом [Scheuner G., Hutschenre-iter J., 1972]. Рассеивающее свет матовое стекло помещают перед поляризатором, т.е. между ним и источником освещения, но ни в коем случае не после поляризатора, так как при этом нарушается функция поляризационного фильтра.

Раньше для поляризационной микроскопии применялись ахроматические объективы без внутренних натяжений, однако сейчас они редкость. На сегодняшний день в поляризационном микроскопе используют только планахроматические объективы, которые не имеют внутренних натяжений. Апохроматические объективы можно применять лишь в тех случаях, когда требуется нормальная цветопередача при микрофотографировании [Appelt Н., 1955].

Поляризационные микроскопы оснащаются вращающимся предметным столиком, положение которого относительно оптической оси можно менять. Угол поворота столика измеряют с помощью градусной шкалы, нанесенной по его окружности. Одним из обязательных условий, обеспечивающих эффективное применение поляризационной микроскопии, является тщательная центровка вращающегося предметного столика с помощью центровочных винтов.

Читайте также:  Инвалидность после инфаркта миокарда какую группу дают

Важным элементом поляризационного микроскопа является компенсатор, помещаемый между объективом и анализатором, обычно в тубусе микроскопа. Компенсатор представляет собой пластинку, изготавливаемую из особых сортов гипса, кварца или слюды. Он позволяет измерять разницу хода расщепленных световых лучей, выражающуюся в нанометрах. Функционирование компенсатора обеспечивается его способностью изменять разницу хода световых лучей, низводя ее до нуля либо увеличивая до максимума. Это достигается вращением компенсатора вокруг оптической оси.

МЕТОДИКА МИКРОСКОПИИ В ПОЛЯРИЗОВАННОМ СВЕТЕ

Поляризационную микроскопию удобнее проводить в затемненном помещении, так как интенсивность светового потока, попадающего в глаз исследователя, уменьшается в 2 раза по сравнению с исходной. После включения осветителя микроскопа вначале добиваются максимально яркого освещения поля зрения путем вращения поляризатора или анализатора. Такое положение поляризационных фильтров соответствует совпадению их плоскостей поляризации. Препарат помещают на предметный столик и изучают его сначала в светлом поле. Затем путем вращения поляризатора (или анализатора) максимально затемняют поле зрения; эта позиция фильтра соответствует перпендикулярному расположению плоскостей поляризации. Для того чтобы выявить эффект анизотропии, нужно совместить плоскость поляризации анизотропного объекта с плоскостью поляризованного света. Эмпирически этого добиваются путем вращения предметного столика вокруг оптической оси. Если для поляризационной микроскопии используют световой микроскоп, не оборудованный вращающимся столиком, то приходится вращать гистологический препарат вручную. Это допустимо, однако в таком случае нельзя проводить отдельные виды поляризационной микроскопии, требующие количественной оценки (определение знака двоякого лучепреломления, величины разницы хода световых лучей).

Если анизотропные объекты в исследуемом препарате расположены упорядоченно (например, анизотропные диски поперечнополосатых мышечных волокон), их удобно изучать в фиксированном положении предметного столика, при котором эти объекты дают максимальное свечение на темном фоне. Если же анизотропные структуры располагаются в препарате хаотично (например, кристаллы), то при их исследовании приходится постоянно вращать предметный столик, добиваясь свечения той или иной группы объектов.

Для проведения более углубленного анализа и оценки топооптических реакций необходимо знать методику определения относительного знака двоякого лучепреломления, величины разницы хода лучей и индекса (коэффициента) лучепреломления.

Знак двоякого лучепреломления характеризует степень и направление смещения хода световых лучей, проходящих через анализатор. Это смещение вызывается топооптическими красителями, и в том случае, если оно направлено в сторону уменьшения разницы хода лучей, говорят об отрицательном знаке двоякого лучепреломления (отрицательная анизотропия), если же оно способствует увеличению разницы хода лучей, то констатируют положительный знак двоякого лучепреломления (положительная анизотропия). Если разница хода лучей исчезает, то эффект анизотропии нивелируется.

Знак двоякого лучепреломления определяют с помощью компенсатора. Процедура его применения заключается в следующем. Исследуемый объект помещают в положение, при котором в темном поле зрения достигается максимальное свечение анизотропных структур. Пластинку RI-компенсатора поворачивают вокруг оптической оси под углом +45° по отношению к плоскости поляризации анализатора. Объект в зависимости от разницы хода световых лучей, которая может колебаться от 20 до 200 нм, приобретает либо голубую, либо желтую окраску. В первом случае знак двоякого лучепреломления положительный, во втором — отрицательный. Следует иметь в виду, что в том случае, когда компенсатор расположен под углом +45°, общий фон затемненного поля зрения имеет красный оттенок.

Можно использовать также компенсатор λ/4 (U-TP137). Процедура его применения такая же, только поле зрения имеет не красный, а серый оттенок, и объект при положительном знаке лучепреломления светится, а при отрицательном — затемнен.

Количественное определение разницы хода световых лучей, выражаемой в нанометрах, осуществляют с помощью компенсатора Брака Келера. Для этого используют формулу:

где λ — константа, проставляемая на компенсаторе заводом-изготовителем, φ — угол поворота компенсатора относительно плоскости поляризации анализатора.

Индекс лучепреломления анизотропного объекта определяют путем его сопоставления (под микроскопом) с тест-объектом, помещаемым рядом. В качестве тест-объектов используют стандартные жидкости с известным индексом лучепреломления. Объект и образец помещают рядом на предметном столике. При несовпадении их коэффициентов преломления между объектом и образцом видна светлая линия, называемая линией Бека. Подъем тубуса микроскопа относительно сфокусированного положения вызывает смещение линии Бека в сторону среды, дающей более выраженный эффект лучепреломления. При совпадении коэффициентов лучепреломления объекта и образца линия Бека исчезает. Обычно коэффициент лучепреломления определяют в монохроматическом свете для натриевой линии спектра (при длине волны 589 нм и температуре 20 °С). Лучепреломление cледует определять для двух взаимно перпендикулярных плоскостей поляризации. С этой целью снимают анализатор и регистрируют лучепреломление объекта в его двух взаимно перпендикулярных положениях. Разница между обоими показателями лучепреломления (ng — nk) характеризует силу лучепреломления.

ОСОБЕННОСТИ ОБРАБОТКИ МАТЕРИАЛА И ПРИГОТОВЛЕНИЯ ПРЕПАРАТОВ

Фиксация материала для поляризационной микроскопии в кислом формалине нежелательна, так как формалиновый пигмент, образующийся при взаимодействии гемоглобина тканей с кислым формальдегидом, обладает анизотропными свойствами и затрудняет изучение препаратов в поляризованном свете. G. Scheuner и J. Hutschenreiter (1972) рекомендуют использовать с этой целью 10 % нейтральный формалин, раствор кальций-формола по Бейкеру, жидкость Карнуа.

Продолжительность фиксации в 10 % нейтральном формалине 24 — 72 ч при 4 °С, в растворе кальций-формола по Бейкеру — 16 — 24 ч при 4 °С. Фиксация в кальций-формоле особенно предпочтительна при исследовании липидно-белковых соединений. Жидкость Карнуа быстро пропитывает ткани. Кусочки толщиной 1 — 2 мм бывают профилированы уже через 1 ч при температуре 4 °С. Для исследования липидов фиксация в жидкости Карнуа непригодна. Кроме того, применяют жидкость Ценкера, особенно при импрегнации солями золота и серебра. После обработки смесью жидкости Ценкера и уксусной кислоты эритроциты приобретают способность к двоякому лучепреломлению.

При исследовании в поляризационном микроскопе плотных тканей (кости, зубы), помимо кислотной декальцинации, необходима дополнительная обработка для удаления коллагеновых волокон. С этой целью шлифы таких тканей в течение нескольких минут варят в смеси глицерина и гидроксида калия (10 мл глицерина и 2 крупинки гидроксида калия) до полного побеления, затем осторожно сливают щелочь, шлиф промывают в воде и переносят с помощью пинцета на предметный столик микроскопа.

Для поляризационной микроскопии используют парафиновые, замороженные и криостатные срезы. Неокрашенные замороженные срезы для изучения в поляризованном свете заключают в глицерин. Нефиксированные криостатные срезы пригодны для поляризационно-микроскопического анализа сразу после приготовления. В связи с их высокой чувствительностью к повреждающему действию различных факторов внешней среды эти срезы все же рекомендуют фиксировать в 10 % нейтральном формалине или растворе кальций-формола.

На результаты поляризационной микроскопии оказывает влияние толщина гистологических срезов. При исследовании толстых срезов создаются условия для наложения разных анизотропных структур друг на друга. Кроме того, при разной толщине срезов могут меняться анизотропные свойства изучаемых структур, поэтому очень важно, особенно при сравнительных исследованиях, обеспечивать постоянную толщину срезов. Рекомендуемая максимальная толщина срезов не должна превышать 10 мкм.

Еще одним обязательным условием является тщательное депарафинирование срезов, так как не удалённые остатки парафина дают выраженный эффект анизотропии, затрудняя исследование. Парафин особенно долго задерживается на эритроцитах и ядрах клеток. Для того чтобы полностью удалить парафин из срезов, рекомендуют провести их следующую обработку.

  • Ксилол 30 мин
  • Спирт 100% 5 мин
  • Смесь метанола и хлороформа (1:1) при 50 °С 24 ч
  • Спирт 100 % 5 мин
  • Спирт 70 % 10 мин Вода
Читайте также:  Проблемы межполушарной асимметрии и межполушарного взаимодействия; СтудИзба

Следует также иметь в виду, что срезы, которые подвергают поляризационной микроскопии, не должны вступать в контакт с фенолами (например, их нельзя просветлять в карбол-ксилоле).

Более подробную информацию по поляризационной микроскопии и применении компенсаторов можно получить по ссылке (http://www.olympusmicro.com/primer/techniques/polarized/polarizedhome.html).

Если у Вас возникли вопросы по поляризационной микроскопии, обратитесь в Школу микроскопии.

Поляризационная микроскопия.

Метод исследования в поляризованных лучах применяется для так называемых оптически анизотропных объектов, обладающих двойным лучепреломлением или отражением. Такими объектами являются многие минералы, угли, некоторые растительные ткани и клетки, искусственные и естественные волокна. Оптические свойства анизотропных микрообъектов проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них. Большинство текстильных волокон также обладает оптически анизотропной структурой, что позволяет использовать при их исследовании метод поляризационной микроскопии.

Наблюдение при поляризационной микроскопии можно проводить как в проходящем, так и в отраженном свете.

В микроскопии с целью получения поляризованного света используют поляризационные фильтры, состоящие из анизотропных кристаллических веществ или плоскопараллельных стеклянных пластинок. Свет, пройдя через них, распадается на два луча с перпендикулярными плоскостями колебаний, т. е. поляризуется. В поперечной механической волне колебания частиц вещества могут происходить в любых направлениях, лежащих в плоскости, перпендикулярной направлению распространения волны. Если при этом направления колебания частиц беспорядочно меняются, но амплитуды их во всех направлениях одинаковы, волна называется естественной, или неполя- ризованной (а). Если колебания происходят только в постоянном направлении, волна называется плоскополяризованной (б), если в различных направлениях, но в некоторых направлениях амплитуды

Рис. 5.8. Виды поляризации волн света: а — естественная или неполяризо- ванная; б — плоскополяризованная; в — частично поляризованная

больше, чем в других, волна называется частично поляризованной (в). Один из лучей (обыкновенный), подчиняясь закону преломления спета, претерпевает полное внутреннее отражение, второй (его принято называть необыкновенным) проходит через фильтр и за счет некоторого отставания параллельно смешается (рис. 5.8).

Выходящий из поляризатора свет имеет строго определенное направление колебания волн, называемое плоскостью поляризации. Если на пути такого света поместить второй поляризатор (в поляризационном микроскопе он называется анализатором), плоскость поляризации которого будет перпендикулярна к плоскости первого, то свет поглотится.

При исследовании анизотропных препаратов к обычной схеме микроскопа перед осветительной системой добавляют поляризатор, а после объектива — анализатор, находящиеся в скрещенном либо параллельном положении относительно друг друга. Свет, излучаемый осветителем, пропускают через поляризатор. Сообщенная ему при этом поляризация меняется при последующем прохождении света через материал (или отражении от него). Эти изменения изучаются с помощью анализатора и различных оптических компенсаторов. Анализируя такие изменения, можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления, количестве оптических осей и их ориентации, вращении плоскости поляризации, дихроизме.

При скрещенных поляризаторе и анализаторе в темном поле зрения микроскопа видны темные, светлые или окрашенные анизотропные элементы объекта. Вид этих элементов зависит от положения объекта относительно плоскости поляризации и от величины двойного лучепреломления. Более точное определение оптических данных объекта делается с помощью различных компенсаторов (неподвижных кристаллических пластинок, подвижных клиньев и пластинок).

Различают два метода работы с помощью поляризационного микроскопа: коноскопический и ортоскопический.

Первый используется при кристаллоскопических исследованиях. Второй — ортоскопический метод — основан на исследовании микрообъектов, в том числе волокон, при освещении с малой осветительной апертурой, когда все участки наблюдаемого микрообъекта практически освещаются перпендикулярно падающим светом.

Люминесцентная микроскопия. Люминесцентная микроскопия основана на изучении структур микрообъектов, выявляемых по свечению, возбуждаемому коротковолновыми лучами спектра.

В микроскопии люминесценцию обычно вызывают лучами спектральной области с длиной волны от 300 до 1000 нм, при этом область исследуемой люминесценции находится в пределах от 400 до 700 нм.

Различают первичную и вторичную люминесценцию. Первичная, или собственная, люминесценция обусловлена способностью объекта флюоресцировать. Вторичная люминесценция возникает после обработки объекта флуорохромными веществами.

Исследование может осуществляться в проходящем и падающем свете по методам темного и светлого полей, но при освещении микрообъектов по методу светлого поля наблюдаемое свечение более интенсивно, поэтому для исследования слабо люминесцирующих объектов предпочтительнее этот метод.

Схема люминесцентного микроскопа отличается от схемы обычного микроскопа наличием двух светофильтров: в осветительной системе и после объектива. Первый выделяет возбуждающее излучение, а второй пропускает только свет флуоресценции. Важное значение в люминесцентной микроскопии имеет правильный подбор по спектральным характеристикам комбинации осветителя и светофильтров. Особое внимание при изучении первичной люминесценции следует обратить на то, чтобы запирающие светофильтры не только полностью поглощали возбуждающий свет, но и пропускали без ослабления все возможные виды волн люминесценции.

В случае исследования вторичной люминесценции объектов, предварительно обработанных флуорохромами, иногда возникает задача наблюдения свечения определенной длины волны. Тогда используются запирающие светофильтры, пропускающие волны узких зон спектра.

Немецкий ученый Штефан Хелль в сотрудничестве с аргентинским ученым Мариано Босси из Института биофизической химии в 2006 г. разработали микроскоп под названием флуоресцентный наноскоп с разрешением в 1 — 10 нм, который позволяет получать высококачественные трехмерные 3D-изображения. Ими впервые применен принцип комбинированной микроскопии, когда опорное освещение по принципу лазерной рентгеноскопии позволяет получить оптическое изображение с выходными длинами волн оптического микроскопа, но обеспечивает разрешение микроскопии в диапазоне 1—10 нм.

Ультрафиолетовая, инфракрасная и рентгеновская микроскопия позволяют проводить исследования за пределами видимой области спектра. Для визуализации изображения используются электроннооптические преобразователи, телевизионные системы, фотографические устройства и др.

Ультрафиолетовая микроскопия (250—400 нм) применяется главным образом при исследовании неокрашенных биологических клеток и тканей, которые обладают избирательным поглощением в УФ-об- ласти.

Инфракрасная микроскопия осуществляется на специальных инфракрасных микроскопах, снабженных электронно-оптическими преобразователями. Этот метод позволяет исследовать непрозрачные для видимого света и УФ-излучения объекты, поскольку их структуры могут хорошо поглощать свет с длиной волны 750—1200 нм. Для инфракрасной микроскопии не нужна предварительная химическая обработка препаратов. Фотофиксация инфракрасного изображения не требует специальных приборов или осветителей. На обычном световом микроскопе с лампой накаливания в качестве источника света можно фотографировать микроскопическое изображение в инфракрасных лучах, если применять фотопластинки, чувствительные в инфракрасной области 0,8—1,5 мкм.

Инфракрасная микроскопия (0,75—1,2 мкм) позволяет изучать внутреннюю структуру некоторых видов стекол, кристаллов, минералов.

Рентгеновская микроскопия представляет собой совокупность методов исследования микроскопического строения объектов с помощью рентгеновского излучения. Предел разрешения рентгеновских

Рис. 5.9. Схема рентгеновской трубки

микроскопов может быть на два-три порядка выше, чем световых, поскольку длина волны рентгеновского излучения на два-три порядка меньше длины волны видимого света.

Наибольшее распространение получила проекционная рентгеновская микроскопия, которая основана на принципе теневой проекции объекта в расходящемся пучке рентгеновских лучей, испускаемых «точечным» источником (рис. 5.9). Проекционные рентгеновские микроскопы состоят из сверхмикрофокусного источника рентгеновских лучей с фокусом 0,1—1 мкм в диаметре. Следовательно, объект должен находиться на малых расстояниях от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки. Простейшая трубка состоит из запаянного стеклянного или керамического баллона (корпуса рентгеновской трубки), внтури которого создается разряжение 10 _6 —5 х 10 -7 мм рт. ст. Линейное разрешение проекционных рентгеновских микроскопов достигает 0,1—0,5 мкм. Контраст в изображении возникает благодаря различному поглощению рентгеновского излучения в областях объекта с разной плотностью или составом; чувствительность метода проекционной рентгеновской микроскопии определяется отличием коэффициентов поглощения рентгеновского излучения различными участками исследуемого объекта. Проекционная рентгеновская микроскопия находит широкое применение в исследованиях микроскопического строения различных объектов в медицине, минералогии, металловедении и других областях. С помощью рентгеновского микроскопа можно оценивать качество окраски или тонких покрытий, оклейки или отделки миниатюрных изделий. Этот метод позволяет получать микрорентгенографии биологических и ботанических срезов толщиной до 200 мкм.

Читайте также:  Как полоскать рот хлоргексидином Homo habilis

Его используют также для анализа смеси порошков легких и тяжелых металлов, при изучении внутреннего строения объектов, непрозрачных для световых лучей и не пропускающих электроны. Исследуемые образцы при этом не надо помещать в вакуум, как в электронном микроскопе, они не подвергаются разрушающему действию электронов.

Метод поляризационной микроскопии

Автор работы: Пользователь скрыл имя, 04 Ноября 2013 в 19:32, доклад

Краткое описание

Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр. Оптические свойства анизотропных микрообъектов различны в различных направлениях и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них. Наблюдение можно проводить как в проходящем, так и в отражённом свете.

Прикрепленные файлы: 1 файл

Поляризационная микроскопия.doc

Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр. Оптические свойства анизотропных микрообъектов различны в различных направлениях и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них. Наблюдение можно проводить как в проходящем, так и в отражённом свете. Свет, излучаемый осветителем, пропускают через поляризатор. Сообщенная ему при этом поляризация меняется при последующем прохождении света через препарат (или отражении от него). Эти изменения изучаются с помощью анализатора и различных оптических компенсаторов. Анализируя такие изменения, можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления, количестве оптических осей и их ориентации, вращении плоскости поляризации, дихроизме.

При поляризационной микроскопии объект исследуют в перпендикулярно направленных световых лучах, т.е. в поляризованном свете. При прохождении через неоднородные клеточные структуры и отражении свойства поляризованного света становятся иными. Изменяются его направление (вдоль поперечной или продольной оси исследуемого объекта) и скорость распространения. В зависимости от этих характеристик можно определить наличие тех или иных структур в клетке. Исследованию подвергаются и окрашенные, и неокрашенные материалы от пациента.

Поляризационная микроскопия необходима для изучения строения тканей, выявления патологических изменений и болезнетворных микроорганизмов в клетках.

Поляризационная микроскопия является одним из мощных методов морфологических исследований структуры и свойств препаратов. Поляризационная микроскопия позволяет изучать свойства гистологических структур, обладающих способностью двойного лучепреломления. Для реализации метода поляризационной микроскопии можно дооснастить любой микроскоп. Микроскоп дооснащается двумя поляризационными фильтрами: первый помещают непосредственно под конденсором, второй помещают между объективом и глазом исследователя. Поворотом поляризатора добиваются затемнения поля зрения. Помещают препарат. Вращают препарат на предметном столике до появления ярко светящихся структур. Свечение появляется в тот момент, когда ось двулучепреломляющего объекта будет находиться под углом 45 град. к плоскости поляризации.

Ранее для поляризационной микроскопии использовались поляризационные фильтры с линейной поляризацией. В новой методике изучалась возможность диагностики препаратов с использованием поляризационных фильтров с циркулярной поляризацией. Оказалось, что изображения, полученные с помощью циркулярных фильтров, несут гораздо больше информации и позволяют выявлять более тонкую структуру тканей и клеток.

Исследования в поляризованном свете можно проводить на замороженных или парафиновых срезах после депарафинизации, неокрашенных и окрашенных, заключенных в различные среды. Блоки ткани следует вырезать и ориентировать таким образом, чтобы мышечные волокна интересующего слоя миокарда были срезаны продольно.

Миофибриллы в поляризованном свете обнаруживают характерную поперечную исчерченность, связанную с чередованием, анизотропных (А) и изотропных (I) дисков. Диски А обладают ярко выраженным положительным двулучепреломлением и кажутся светлыми в поляризованном свете (в обычном свете они темные), тогда как I-диски почти полностью лишены способности к двулучепреломлению и в поляризованном свете выглядят темными (в обычном свете — светлые).

С помощью поляризационной микроскопии удобно выявлять наиболее универсальные повреждения мышечных волокон миокарда и скелетных мышц — контрактурные повреждения (2, 3) (нарушение поперечной исчерченности кардиомиоцитов — одним из ранних признаков повреждения миофибрилл).

Принято выделять 3 стадии этих повреждений:

— I стадия — усиливается анизотропия на отдельных участках мышечных волокон;

— II стадия — А-диски с повышенной анизотропией сближаются, вследствие чего толщина I-дисков уменьшается;

— III стадия — А-диски сливаются в сплошной анизотропный конгломерат.

Наряду с контрактурными повреждениями поляризационная микроскопия позволяет идентифицировать еще один тип поражения поперечно-полосатых мышечных волокон — гиперрелаксацию саркомеров, свойственную в большой мере ишемии миокарда (1).

Простота поляризационного метода позволяет с минимальными затратами резко повысить достоверность диагностики наличия инфаркта миокарда.

По поводу поляризационного микроскопа. Ситуация состоит в том, что практически из любого микроскопа можно сделать поляризационный. Используются два поляризационных фильтра (покупаемых в фотомагазине) — один помещается над осветителем, а второй помещается между препаратом и объективом.

Создан справочный CD-ROM «Поляризационная микроскопия». На диске собрано большое количество работ и материалов по применению поляризационной микроскопии.

Создан специализированный комплекс — Автоматизированное рабочее место судмедэксперта. В состав комплекса входят — микроскоп поляризационный Nikon E200, цифровая камера с 8 млн. элементов, адаптеры и программное обеспечение.

1. Кактурский Л.В. Поляризационная микроскопия // Микроскопическая техника. М.: Медицина, 1996.

2. Целлариус Ю.Г., Семенова Л.А. Применение поляризационной микроскопии для гистологической диагностики ранних стадий ишемических и метаболических повреждений миокарда // Cor et vasa. 1977. Vol. 19. N 1. P. 28 — 33.

3. Непомнящих Л.М. Морфогенез важнейших общепатологических процессов в сердце. Новосибирск: Наука, 1991. 352 с.

4. Целлариус Ю.Г., Семенова Л.А., Непомнящих Л.М. Очаговые повреждения и инфаркт миокарда. Световая, поляризационная и электронная микроскопия. Новосибирск, 1980.

Поляризационные микроскопы[править | править исходный текст]

В основе принципа действия поляризационных микроскопов лежит получение изображения исследуемого объекта при его облучении поляризованными лучами, которые в свою очередь должны быть получены из обычного света с помощью специального прибора — поляризатора. В сущности при прохождении поляризованного света через вещество либо отраженное от него меняет плоскость поляризации света в результате чего на втором поляризационном фильтре выявляется в виде излишнего затемнения. Либо дают специфичные реакции как двойное лучепреломление в жирах.

Ссылка на основную публикацию
Совет за минуту головные боли во время месячных
Причины головной боли при менструации Головная боль – это один из частых неврологических расстройств среди населения. Различные типы цефалгий (в...
Слюни у 2-месячного ребенка почему у новорожденного и грудничка повышенное слюноотделение
Детские советы Предмет гордости многих мам и пап нередко отражается фразой: "А наш (наша), между прочим, в пять месяцев сел...
Слюнотечение симптомы, причины, диагностика и лечение слюнотечения
В чем кроются причины появления повышенного слюноотделения Под патологически повышенным слюноотделением «гиперсаливацией» подразумевается состояние, при котором слюнные железы вырабатывают жидкость...
Совет за минуту жжение в стопах
Боль, тяжесть, жжение в ногах. Основные причины, симптомы и лечение. Боль, тяжесть, жжение в ногах. Основные причины, симптомы и лечение....
Adblock detector